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The sliding friction as a function of scanning velocity at the nanometer scale was simulated based on a
modified one-dimensional Tomlinson model. Monte Carlo theory was exploited to describe the thermally
activated hopping of the contact atoms, where both backward and forward jumps were allowed to occur. By
comparing with the Monte Carlo results, improvements to current semiempirical solutions �E. Riedo et al.,
Phys. Rev. Lett. 91, 084502 �2003�� were made. Finally, experimental results of sliding friction on a
NaCl�100� as a function of normal load and scanning velocity �E. Gnecco et al., Phys. Rev. Lett. 84, 1172
�2000�� where successfully simulated.
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Introduction. One of the conceptually simplest models
that addresses the atomic origins of sliding friction was ini-
tially proposed by Tomlinson and Prandtl,1,2 which assumes
a periodically and sinusoidally varying change in potential
energy at the sliding interface. This is most often applied to
the case of a single asperity contact, such as might be en-
countered in atomic force microscope �AFM� experiments.3,4

This model has been extensively applied to understanding
the temperature and velocity dependence of sliding friction,
as well as the stick-slip behavior observed in this type of
experiment.5–10 In the model, a harmonic strain caused by the
motion of the contact modifies the sinusoidal sliding poten-
tial. In the simplest case of such a model �at zero tempera-
ture�, sliding occurs when the barrier height of the total
�harmonic+sinusoidal� potential decreases to zero, resulting
in atomic stick-slip motion. However, temperature and veloc-
ity effects are easily included by incorporating a Boltzmann
probability that an atom surmounts the potential barrier be-
fore it decreases to zero. In this case, the velocity depen-
dence arises since the potential becomes time dependent so
that the rate at which the tip surmounts the barrier also de-
pends on time. In order to analytically solve the equation for
the Tomlinson model, the height of the barrier close to the
inflection point is approximated by a simple analytical func-
tion.

However, such kinetic events can also be naturally de-
scribed by Monte Carlo theory. A similar approach has been
previously exploited11–14 in order to study temperature ef-
fects on the slip position �stick-slip motion� as well as on the
frictional force. Here we focus on the velocity dependence of
the frictional force. In order to test whether this approach is
feasible, Monte Carlo calculations have been performed for a
one-dimensional Tomlinson model at finite temperature. The
results of the simulation are in excellent agreement with pre-
vious analytical solutions of the Tomlinson model with a
sinusoidal sliding potential.7 However, the advantage of us-
ing such simulations is that it can generally be applied to any
form of the periodic sliding potential. In addition, the ability
to rapidly obtain numerical solutions to the Tomlinson model
allows more precise approximations to be made to the semi-

empirical solution and this is illustrated below. Finally the
simulation results are compared with the experimental AFM
data obtained by Gnecco et al.,5 on a NaCl�100� surface
using a silicon tip, where the frictional force was measured
as a function of normal load and scanning velocity.

Theoretical methods. The Tomlinson model involves a
time-dependent harmonic potential superimposed on a sinu-
soidal potential describing the contact. The time-dependent
potential can be expressed as

V�x,t� = −
E0

2
cos�2�x

a
� +

kL

2
�vt − x�2. �1�

The first term describes the periodic potential of the surface
and the second term is due to the imposed harmonic poten-
tial, where kL is the effective stiffness of the contact, a is the
surface lattice constant, E0 is the potential corrugation, x is
the position of the tip, and v is the scanning velocity so that
vt becomes the time-dependent position of the tip support X.
In the simplest expression of the model, the system is as-
sumed to be at temperature T=0. Under this condition, slid-
ing takes place at some critical force F� at which the poten-
tial barrier height �E becomes zero. Thus, F� is the lateral
force required to slide the contact at zero temperature. The
system then jumps to the next energy minimum resulting in a
decrease in the lateral force, giving rise to the experimentally
observed stick-slip motion. Since at T=0, the first and sec-
ond derivatives of the potential must be zero when sliding
takes place, one can easily obtain F�, which is

F� =
�E0

a
. �2�

At some finite temperature T, assuming that the jump is ther-
mally assisted as the instantaneous lateral force FL ap-
proaches F�, this results in a theoretical velocity and
temperature-dependent friction force that agrees well with
experiment. Since the transition over the potential barrier is
considered to be a thermally activated process, the transition
rate w can be described by

PHYSICAL REVIEW B 80, 153408 �2009�

1098-0121/2009/80�15�/153408�4� ©2009 The American Physical Society153408-1

http://dx.doi.org/10.1103/PhysRevB.80.153408


w�t� = f0 exp�−
�E�t�
kBT

� , �3�

where f0 is the frequency attempt of a transition and kB is the
Boltzmann constant. Monte Carlo methods are ideally suited
to analyzing these types of processes.

For each Monte Carlo trial the value of w is calculated at
some time t and compared to a random number �1 uniformly
distributed in the interval �0,1�. If �1�w the transition is
allowed to occur, where both backward and forward transi-
tions are allowed. Finally the lateral force is recorded as a
function of time. The process is repeated a sufficient number
of times to yield an average friction force with negligible
statistical error. The conversion between Monte Carlo time
and real time is made by defining an elementary transition
probability per unit time.15

Monte Carlo simulations usually consist of repeating a
process under a certain probability distribution and calculat-
ing the average of all the outcomes. To minimize the calcu-
lation time, it is useful to initially define all the parameters
that will remain constant during the simulation. In our case,
these parameters are temperature, velocity, pre-exponential
factor �attempt frequency�, potential height, lateral force con-
stant, and lattice spacing. Furthermore, the positions of the
critical points of the potential, its minima and maxima, shift
as the lateral force varies. In order to avoid calculating them
during each step, a position matrix is generated prior to the
simulation. Since only the first derivative of the Tomlinson
potential is needed to obtain the matrix, the only required
parameters are the potential corrugation E0, the lattice con-
stant a, and the lateral stiffness constant kL. To be consistent
with the simulations shown below the parameters used are
E0=0.466 eV, a=0.4 nm, and kL=0.86 N /m and the re-
sults for the matrix are displayed in Fig. 1. As indicated by
Eq. �1�, the form of the sliding potential varies as the canti-
lever position changes �with time�. This results in a change
in the height of the potential, which has a time-dependent
decrease from E0. Figure 2 illustrates how each critical point
is affected as the support position increases.

Comparison between Monte Carlo theory simulation and
analytical results. In order to test the validity of the Monte
Carlo simulation, the results are compared with a semiempir-

ical equation that allows an analytical solution to the Tom-
linson model to be obtained when using a sinusoidal poten-
tial. In order for the particle to jump from one position xmin
to the next, it overcomes an energy barrier located at xmax so
that �E is given by

�E = V�xmax,t� − V�xmin,t� . �4�

At zero temperature, the lateral force required to provide the
energy for the jump is the critical force F� and is given by
Eq. �2�. At some finite temperature, however, the transition
of the tip from one minimum to the adjacent one becomes a
thermally activated process, and its occurrence is given by a
Gaussian distribution of probabilities. In this case, the prob-
ability of the particle not jumping p�t� is described by the
master Eq. �5�,

dp

dt
= − f0 exp�−

�E�t�
kBT

�p�t� , �5�

where the parameters are defined above. Gnecco et al.5 ob-
served that the logarithmic velocity dependence of the lateral
sliding force could be explained by assuming a linear rela-
tionship between �E and the lateral force FL. This logarith-
mic velocity dependence occurs over a limited and relatively
low range of velocities but it disappears when the jumps
occur very close to the critical point given by �E=0 and this
effect is not captured by a linear relationship between �E
and FL. To address this issue, Sang et al.6 proposed an im-
proved relationship, shown in Eq. �6�,

�E =
1

�
�F� − FL�3/2, �6�

where the parameter � is a constant of the system. Using this
approximation for �E, Riedo et al.7 were able to derive a
semiempirical expression for the velocity dependence of the
lateral frictional force FL but without limitations to the ve-
locity range as

FIG. 1. �Color online� Plot of the input matrix that is used for
the Monte Carlo simulations �see text� where the critical-point po-
sition for sliding is plotted versus the support position.

FIG. 2. �Color online� Plot of the shape of the combined sinu-
soidal and harmonic Tomlinson potential for an undisplaced support
�X=0.0 nm� and for a displaced support �X=0.2 nm�. This shows
both the change in height of the potential as a function of displace-
ment as well as the change in positions of the maxima and minima.
Also indicated are the positions in the potential corresponding to the
values in the matrix plotted in Fig. 1.
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1

�kBT
�F� − FL�3/2 = ln

v0

v
−

1

2
ln�1 −

FL

F�� , �7�

where v0 is equal to

v0 =
2f0�kBT

3kL
	F�

. �8�

Note that these formulas are correct only for the simplest
sinusoidal potential in the Tomlinson model. In order to test
the validity of using Monte Carlo methods to simulate Tom-
linson sliding, the Monte Carlo results are compared with
those of Eq. �7� using the formula for � given in reference.7

The results are compared in Fig. 3 where the lateral force
FL is plotted as a function of ln�v�, for various values of
E0 �0.275, 0.370, and 0.475 eV�, which therefore specify
the values of F� as 0.345, 0.466, and 0.597 nN, respectively.
The remaining values used for the calculations and simula-
tions are f0=50 MHz, kL=0.86 N /m, and a=0.4 nm. These
parameters were chosen since they are relevant to sliding
on NaCl�100� single-crystal surface as will be discussed
below. The resulting lateral force versus velocity curves
obtained using the Monte Carlo method are displayed in
Fig. 3 as solid lines with the top curve corresponding to the
highest value of E0 �of 0.475 eV� and the bottom curve to the
lowest value �0.275 eV�. The semiempirical analytical re-
sults, Eq. �7�, were then calculated using the expression for �
from Riedo et al.,7 which is defined entirely by the properties
of the surface potential. This gives rise to the results plotted
as dashed lines in Fig. 3 and clearly do not agree with the
results of the Monte Carlo simulations. The disparity be-
tween the Monte Carlo simulations and the semiempirical
calculations was traced to the approximate value of � and a
more precise value was calculated �see next section�. The
results of the solution to the semiempirical equation �Eq. �7��
using the improved formula for � is also plotted as dotted
lines and is in much better agreement with the results of the
Monte Carlo simulations. There are, however, some slight
differences between the two curves, in particular, in the re-
gion where sliding undergoes a transition from velocity-

dependent to velocity-independent sliding. We believe this
disparity arises since the semiempirical equation �Eq. �7��
does not take into account effects due to the decreasing dis-
tance between adjacent minima and maxima as sliding oc-
curs while the Monte Carlo calculation does. We feel there-
fore that the Monte Carlo results provide a more accurate
representation of the solution to the Tomlinson model.

Improved calculation of the � parameter. As noted in the
previous section, it was found that the value of the � param-
eter from Riedo et al.7 yielded an analytical solution that did
not agree with the results of the Monte Carlo simulations. In
their work, � was calculated by taking the first derivative of
the Tomlinson potential with respect to x. By expanding in a
Taylor’s series around the critical point x�=a /4, it is found
that �E varies as a function of time as

�E =
2	2

3
E0�1 −

kLvt

F� �3/2
. �9�

Assuming the lateral force to be FL
kLvt and comparing
with Eq. �6� yields

�sin =
3�	F�

2	2a
. �10�

However, the Monte Carlo simulations reveal that, by con-
sidering that FL
kLvt, the assumption that the minima and
maxima of the interaction potential remain fixed in position
under any lateral force introduces an error that, depending on
the values of the input parameters, can result in significant
differences, as emphasized by the data in Fig. 3. In order to
obtain a more accurate expression for �, a different approach
is taken in the following. First consider the case when FL
=0 at t=0. In this case, Eq. �6� becomes

�E =
1

�
�F��3/2 �11�

and Eq. �4� can be rewritten as

�E = −
E0

2
cos�2�xmax

a
� +

kL

2
�vt − xmax�2

+
E0

2
cos�2�xmin

a
� −

kL

2
�vt − xmin�2. �12�

At t=0, xmax,=a /2 and xmin=0, and substituting in Eq. �12�,
�E becomes

�E =
kLa2

8
+ E0. �13�

Finally substituting Eq. �13� into Eq. �11� and replacing E0
with the value for F� from Eq. �2� yields a more precise
value for � for a sinusoidal potential as

�sin =
�F��3/2

� kLa2

8
+

F�a

�
� . �14�

This new expression for � also includes the effect of kL,
which from our Monte Carlo simulations can clearly have an
important effect on � �Fig. 4�.

FIG. 3. �Color online� Comparison of the lateral force FL versus
ln�v� �Eq. �7�� using the value of � from Riedo et al. �dashed lines�
compared with the Monte Carlo simulations �solid lines� using the
same parameters for the sliding potential. Shown also as dotted line
are the results calculated using Eq. �7� with the improved formula
for the value of �, Eq. �14�.
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Comparison with experimental results. In order to further
test the validity of the Monte Carlo simulations, these are
used to simulate the experimental results obtained by Gnecco
et al.5 In these experiments, the frictional force was mea-
sured by AFM with a silicon tip sliding against a NaCl�100�
surface, under ultrahigh-vacuum conditions. The frictional
force was measured as a function of scanning velocity under
two different normal loads of 0.65 and 0.44 nN at room
temperature. The experimental results are compared with the
simulations in Fig. 5, where the agreement between the
simulations and the experimental results is very good. The fit
was obtained using parameters that are consistent with the
experimental conditions. Thus, the lattice spacing was main-
tained at a=0.4 nm, in agreement with the lattice constant of
KCl, the effective lateral force constant kL was 0.86 N/m and
the temperature T maintained at 293 K. In order to obtain the
best fit to the experimental data, the potential-energy corru-
gation E0 was set to 0.275 eV at a normal load of 0.65 nN
and 0.37 eV at a normal load of 0.44 nN, and the attempt
frequency f0 was set to 50 MHz. Sang et al.6 obtained similar
values for the fitting parameters by solving a Langevin equa-
tion for Tomlinson sliding. These results indicate that Monte
Carlo simulations can be efficiently and effectively used
to mimic sliding in the Tomlinson model. An advantage of
using the Monte Carlo approach is that it can also be simply

applied to periodic sliding potentials of any shape and is not
restricted just to simple sinusoidal potentials.

Conclusions. A one-dimensional Tomlinson model was
analyzed using Monte Carlo theory to explore the velocity
and load dependence of sliding friction at the nanometer
scale. Since temperature effects are those that give rise to a
velocity-dependent frictional force, Monte Carlo theory was
used to include the thermal contribution to the hopping pro-
cess of the atoms in the contact. To test the validity of the
Monte Carlo simulations, our results were compared with a
semiempirical equation proposed by Riedo et al.,7 using the
same parameters for the interaction potential. It was found
that the semiempirical equation could be improved and a
new expression for the parameter � was obtained. To further
test the validity of the simulations, experimental results ob-
tained by AFM on a NaCl�100� surface using a tungsten tip
were successfully reproduced.
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FIG. 4. �Color online� Plot of the value of � versus the cantile-
ver force constant kL for various values of the height of the Tom-
linson potential E0 of 1.0, 0.5, and 0.25 eV calculated using Eq.
�14� �shown as solid line� or by using Monte Carlo theory
�symbols�

FIG. 5. �Color online� Plots of the experimentally measured
lateral force versus ln�v�, where v is the sliding velocity at normal
loads of 0.65 ��� and 0.44 nN ��� for sliding on NaCl�100�. Shown
as solid lines are the solutions to the Tomlinson sliding model ob-
tained from Monte Carlo simulations using the following param-
eters: a=0.4 nm, kL=0.86 N /m, and T=293 K. E0=0.475 eV at
a normal load of 0.65 nN and 0.353 eV at a normal load of 0.44 nN,
and f0=50 MHz
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